module PublishND
import StdGeneric, GenEq, StdMisc
from StdEnv import
instance == {#Char}, instance == Int, instance == Real,
&&, class == (..), instance == [a] | == a
Start = let p = pvar "P" in [notI2 p,notE2_nc p,notE3 p,notE3_nc p,errNotE2 p]
where
impOpen r p = impE r (assum p)
mix a b
# r = andI a b
# r = andE r
= r
mix` a b
# r = andI a b
# r = andE` r
= r
/*
p, p -> _|_ |- _|_
-----------------------------
p |- (p -> _|_) -> _|_
*/
notI2 p
# a = assum p
# b = assum (p --> B)
# r = mix` a b
# r = impOpen r p
# r = impI r (p --> B)
= r
/*
~p,~~p |- ~p /\ ~~p
--------------- assum(~p),assum(~~p),andI,contra,absurd(p)
~p
*/
notE2_nc p // !!!!!! [!] !!!!!!!
# np = ~ p
# nnp = ~ np
# a = assum np
# b = assum nnp
# r = contra a b
# r = absurd r p
= r
/*
P |- (P --> _|_) --> _|_
((P --> _|_) --> _|_) --> _|_ |- ((P --> _|_) --> _|_) --> _|_
((P --> _|_) --> _|_) --> _|_, P |- _|_
-------------------------------------------------
((P --> _|_) --> _|_) --> _|_ |- P --> _|_
*/
notE3 p
# n3 = ((p --> B) --> B) --> B
# a = notI2 p
# b = assum n3
# r = contra a b
# r = impI r p
= r
notE3_nc p
# np = ~ p
# nnp = ~ np
# nnnp = ~ nnp
# a = assum nnp
# b = assum nnnp
# r = contra a b
# r = absurd r np
= r
/* doubleNot:
~~~p,p,... |- q /\ ~q
------------- weak(p),contra,notI3,absurd
p |- ~~p
*/
errNotE2 p
# np = ~ p
# nnp = ~ np
# nnnp = ~ nnp
# r = assum (nnp /\ nnnp)
# a = andE r
# b = andE` r
# r = contra a b
// r = absurd r nnp
= r
pvar a = PV a
tvar a = TV a
/* ----------------- TCB (so must be in separate module with ::Deduced as abstract type ----------------------- */
start => EMPTY |- T
assum p => p$ EMPTY WITH p |- p
weak (v |- p) q => q$ v WITH q |- p
impI (v |- p) q | q IN v => q$ v WITHOUT q |- q --> p
impE (v |- p --> q) (w |- p`) | p == p` => v AND w |- q
andI (v |- p) (w |- q) => v AND w |- p /\ q
andE (v |- p /\ q) => v |- p
andE` (v |- p /\ q) => v |- q
orI (v |- p) q => p$ v |- p \/ q
orI` (v |- p) q => q$ v |- q \/ p
orE (v |- r) (w |- r`) (y |- p /\ q) | r == r` && p IN v && q IN w => (v WITHOUT p) AND (w WITHOUT q) AND y |- r
//notI (v |- p) => v |- ~ (~ p)
contra (v |- p) (w |- ~p`) | p == p` => v AND w |- B
contra (v |- p) (w |- p` --> B) | p == p` => v AND w |- B
/* --------- NONCONSTRUCTIVE PART --------------- */
absurd (v |- B) p | ~p IN v => p$ v WITHOUT ~p |- p
botE (v |- B) p => p$ v |- p
midE p => p$ EMPTY |- p \/ ~p
:: Deduced
= (|-) infix 1 (Set Prop) Prop
/* -------------------------------------------- END OF TCB ------------------------------------- */
:: Prop
= (====) infix 4 Term Term | (<) infix 4 Term Term | (>) infix 4 Term Term
| (=<) infix 4 Term Term | (>=) infix 4 Term Term | (-->) infix 5 Prop Prop
| (<--) infix 5 Prop Prop | (<->) infix 5 Prop Prop | (\/) infixr 6 Prop Prop
| (/\) infixr 6 Prop Prop | ~ Prop | A [String] Prop | E [String] Prop
| B /* bottom */ | T /* truth */ | PV String
derive gEq Prop ; instance == Prop where (==) a b = gEq{|*|} a b
:: Term
= I Int | F Real | S String | C String | TV String | (+) infixl 6 Term Term
| (-) infixl 6 Term Term | (*) infixl 7 Term Term | (/) infixl 7 Term Term
| (%) infixl 9 Term Term | (++) infixr 5 Term Term | (^) infixr 8 Term Term
derive gEq Term ; instance == Term where (==) a b = gEq{|*|} a b
:: Set a :== [a]
EMPTY = []
(WITH) infixl 3 :: [Prop] Prop -> [Prop]
(WITH) w p = [p:w WITHOUT p]
(WITHOUT) infixl 3 :: [Prop] Prop -> [Prop]
(WITHOUT) [w:ws] p | w == p = ws ; = [w:ws WITHOUT p]
(WITHOUT) [] _ = []
(AND) infixl 2 :: [Prop] [Prop] -> [Prop]
(AND) w [v:vs] = (w WITH v) AND vs // remove pars?
(AND) w [] = w
(IN) infix 9 :: Prop [Prop] -> Bool
(IN) p [w:ws] | w == p = True ; = p IN ws
(IN) _ [] = False
($) infixr 0 :: Prop a -> a
($) p r | valid p = r ; = abort "SYNTAX"
valid a = True
Thursday, July 9, 2009
Tiny proof assistant in Clean without Curry-Howard Isomorphism
Tiny proof assistant in Clean using Curry-Howard Isomorphism
module CHI
Start = notE3 (|- (((P --> Bot) --> Bot) --> Bot)) (Wff P) //notI2 (|- P) (Wff P)
where
notE3 n3 wff_p = impI (hlp1 n3) wff_p
where
hlp1 n3 p = nd_contra (notI2 p wff_p) n3
notI2 p wff_p = impI (hlp p) (nd_not wff_p)
where
hlp p pb = impE pb p
nd_contra p pb = contra p (nd_not_def` pb)
nd_not wff_p = wff_imp wff_p wff_bot
/* ======================== TCB ========================== */
/* must be hidden in separate module */
/* ------- SYNTAX --------- */
wff_a :: Wff CstA ; wff_a = Wff A ; wff_b :: Wff CstB ; wff_b = Wff B ; wff_p :: Wff CstP ; wff_p = Wff P
wff_c :: Wff CstC ; wff_c = Wff C ; wff_d :: Wff CstD ; wff_d = Wff D ; wff_q :: Wff CstQ ; wff_q = Wff Q
wff_bot :: Wff Bot
wff_bot = Wff Bot
wff_true :: Wff TRUE
wff_true = Wff TRUE
wff_not :: (Wff p) -> Wff (Not p)
wff_not (Wff p) => Wff (~ p)
wff_and :: (Wff p) (Wff q) -> Wff (And p q)
wff_and (Wff p) (Wff q) => Wff (p /\ q)
wff_or :: (Wff p) (Wff q) -> Wff (Or p q)
wff_or (Wff p) (Wff q) => Wff (p \/ q)
wff_imp :: (Wff p) (Wff q) -> Wff (Imp p q)
wff_imp (Wff p) (Wff q) => Wff (p --> q)
/* ----------- CONSTRUCTIVE ---------- */
impI :: ((Deduced p) -> Deduced q) (Wff p) -> Deduced (Imp p q)
impI f (Wff p) => case f (|- p) of |- q -> |- (p --> q)
impE :: (Deduced (Imp p q)) (Deduced p) -> Deduced q
impE (|- (p --> q)) (|- p`) => |- q
andI :: (Deduced p) (Deduced q) -> Deduced (And p q)
andI (|- p) (|- q) => |- (p /\ q)
andE :: (Deduced (And p q)) -> Deduced p
andE (|- (p /\ q)) => |- p
andE` :: (Deduced (And p q)) -> Deduced q
andE` (|- (p /\ q)) => |- q
orI :: (Deduced p) (Wff q) -> Deduced (Or p q)
orI (|- p) (Wff q) => |- (p \/ q)
orI` :: (Deduced p) (Wff q) -> Deduced (Or p q)
orI` (|- p) (Wff q) => |- (p \/ q)
contra :: (Deduced p) (Deduced (Not p)) -> Deduced Bot
contra (|- p) (|- (~ q)) => |- Bot
mp p q = impE p q
nd_not_def (|- (~ p) ) = |- (p --> Bot)
nd_not_def` (|- (p --> Bot)) = |- (~ p)
/* ----------- NONCONSTRUCTIVE (move to separate module) --------- */
absurd :: ((Deduced (Not p)) -> Deduced Bot) (Wff p) -> Deduced p
absurd _ (Wff p) => |- p
bottom_complete :: (Deduced Bot) (Wff p) -> Deduced p
bottom_complete (|- Bot) (Wff p) => |- p
tertium :: (Wff p) -> Deduced (Or p (Not p))
tertium (Wff p) => |- (p \/ ~ p)
:: Deduced p = |- p /* *MUST* be abstract type! */
:: Wff a = Wff a /* *MUST* be abstract type! */
/* ======================== END OF TCB ========================== */
:: CstA = A ; :: CstB = B ; :: CstC = C ; :: CstD = D ; :: CstE = E ; :: CstP = P ; :: CstQ = Q
:: Not a = ~ a
:: Imp a b = (-->) infix 5 a b
:: And a b = (/\) infixr 6 a b
:: Or a b = (\/) infixr 6 a b
:: Bot = Bot
:: TRUE = TRUE
Tuesday, March 3, 2009
Read Only True Graph Builder In Functional Language
:: ROGraph a = ROGraph a [ROGraph a]
:: RODGraph a = RODGraph a [RODGraph a] [RODGraph a]
buildROGraph :: (a b (c,[b])) -> Map b (ROGraph c) | Lookup MapOnList b & UpdateDefault MapOnList b & Pairs a
buildROGraph m = buildGraph m \ id val fws bws = ROGraph val fws
buildRODGraph m = buildGraph m \ id val fws bws = RODGraph val fws bws
buildGraph rawGraph constructor = futureIndex
where
raw = pairs rawGraph
forwards = buildFastMap $ flip map raw \ (id,(a,fws)) = (id,fws)
backwards = buildBackwards forwards
futureIndex = buildFastMap $ flip map raw \ (id,(a,fws)) = (id,build id a fws)
fromFuture ids = map (fromJustXXX o lookup futureIndex) ids
build nodeId contents forwards
# backwards = case lookup backwards nodeId of Just x -> x ; _ -> []
= constructor nodeId contents (fromFuture forwards) (fromFuture backwards)
buildBackwards :: (a b [c]) -> a c [b] | Empty (a c [b]) & Pairs a & UpdateDefault a c
buildBackwards graph = seqMap processNode (pairs graph) empty
where
processNode (id,forwards) = seqMapLFA forwards \ fr m = snd $ updateDefault fr (cons id) [] m
testGraph :: Map Int (Int,[Int])
testGraph = fromPairs [ @1 [2,3,4], @2 [4,1], @3 [1,2], @4 [3,4] ]
where
@ a b = (a,(a,b))
Start = printRODGraph $ fromJust $ lookup (buildRODGraph testGraph) 1
Saturday, January 17, 2009
Adding Pluggable Search Strategies to Your Favourite Functional Programming Language
search3 :: !Bool !(u:a -> .(v:([u:a] -> w:[.b]) -> x:[.b])) u:a -> y:[.b], [v <= u,x v <= w,x v <= y]
search3 kind explorer root
| kind = do_all_depth [root] []
= do_all_breadth [root] []
where
do_all_depth [] t = t
do_all_depth [v:vs] t = explorer v \ vs` = do_all_depth vs` (do_all_depth vs t)
do_all_breadth [] t = t
do_all_breadth [v:vs] t = explorer v \ vs` = do_all_breadth vs (do_all_breadth vs` t)
Thursday, January 15, 2009
Purely Functional Queue with Constant Operation Times (Credits to Okasaki)
:: Queue a = Queue !Int !.[a] !Int !.[.[a]] /* enqLen enqList deqLen deqList */
adjust :: !u:(Queue .a) -> v:(Queue .a), [u <= v]
adjust q=:(Queue enqLen enqList deqLen deqList)
| enqLen > 3 && enqLen >= deqLen = Queue 0 [] (enqLen + deqLen) (deqList ++ [reverse enqList])
| otherwise = q
enq :: .a !u:(Queue .a) -> v:(Queue .a), [u <= v]
enq a (Queue enqLen enqList deqLen deqList)
= adjust (Queue (enqLen + 1) [a:enqList] deqLen deqList)
deq :: !u:(Queue .a) -> (.a, !v:(Queue .a)), [u <= v]
deq (Queue enqLen enqList deqLen [[]:deqList])
= deq (Queue enqLen enqList deqLen deqList)
deq (Queue enqLen enqList deqLen [[a:as]:deqList])
= (a, adjust (Queue enqLen enqList (deqLen - 1) [as:deqList]))
deq (Queue enqLen enqList 0 deqList)
= deq (Queue 0 [] enqLen [reverse enqList])
newq :: .(Queue .a)
newq = Queue 0 [] 0 []
emptyq :: !.(Queue .a) -> .Bool
emptyq (Queue 0 _ 0 _) = True
emptyq _ = False
Subscribe to:
Posts (Atom)